Fracture and Toughening of Materials

Wole Soboyejo and Jing Du
AUST-Abuja
And
Princeton University

Fracture and Toughening of Materials

- All materials can fracture at sufficiently high stresses
- Fundamentals of fracture are presented for failure under monotonic loading
- · We will consider the stress concentration associated with notches and cracks
- The fundamentals of fracture mechanics will then be presented
- Ways of improving the fracture resistance of solids will then be examined-toughening mechanisms
- Examples of toughened biomaterials will then be presented

Flaws and Stress Concentration

Elliptical hole in a plate:

Stress concentration factor:

$$K_t = \frac{\sigma_m}{\sigma_0} = \frac{\text{internal stress}}{\text{applied stress}}$$

Large Kt promotes failure
 Bad: large, sharp, cracks

Engineering Design

Driving Force For Crack Growth

- Irwin proposed the stress intensity factor K as the crack driving force
- K is the amplitude of the crack-tip stress fields

$$\sigma_{ij} = \frac{K}{\sqrt{2\pi r}} f(r,\theta)$$

Introduction to Linear Elastic Fracture Mechanics

- Assumes that all structures contain cracks
- Assumes that crack size much bigger than plastic zone size

- Concept of similitude (lab versus real structures)
- Can use to determine critical conditions

The Stress Intensity Factor - Applications and Basic Definitions

• The stress intensity factor, K, is generally given by

$$K = F\left(\frac{a}{w}\right)\sigma\sqrt{\pi a}$$

where - $F\left(\frac{a}{W}\right)$ is a function of geometry

- σ is the applied stress
- a is the crack length
- Concept of similitude makes it possible to apply K to a wide range of specimen geometries - from lab specimens to real structures
- K represents the driving force for crack growth

Possible Modes of Loading

Fracture Toughness Testing

Often use ASTM E399 testing code

 $K_Q = Y\sigma\sqrt{\pi a}$ = Fracture Toughness $K_Q = K_{Ic}$ if we satisfy code requirements

Effects of Specimen Thickness on Fracture Toughness

K_{Ic} is a thickness independent material property

Fracture Design

Crack Growth Condition:

$$K = K_{lc}$$

 Max. flaw size dictates design stress

$$\sigma_{\mathbf{c}} \le \frac{\mathbf{K}_{\mathbf{lc}}}{\mathbf{Y}\sqrt{\pi \mathbf{a}}} \qquad \mathbf{Y} = \begin{cases} 1.0 \\ 1.1 \end{cases}$$

 Design stress dictates max. flaw size

$$a_c \le \frac{1}{\pi} \left(\frac{K_{lc}}{\sigma Y} \right)^2$$

Design Example

Aircraft wing

-material has K_{Ic} = 26MPa√m

For design A

- -largest flaw is 9mm
- -failure stress is 112MPa

For design B

- -largest flaw is 4mm
- · What is the new failure stress?

• Use
$$\sigma_c = \frac{K_{lc}}{Y\sqrt{\pi a}} \qquad \sigma_c^B = \sigma_c^A \sqrt{a^A/a^B}$$

$$\sigma_c \sqrt{a} = const. \qquad = 168 MPa$$

Fracture Toughness (Another material Property)

 A measure of the resistance to crack initiation or crack growth

 Measured with standard cracked fracture mechanics specimen

Resistance-Curve Behavior in Materials

- · Perfectly brittle materials exhibit no resistance to crack growth
- · Most materials exhibit some kind of resistance-curve behavior
- Resistance-curve behavior is due largely to crack-tip shielding mechanisms
- Observed in biomaterials such as bone, dental ceramics, titanium alloys, etc.

No Resistance to Crack Growth

Resistance-Curve Behavior

Toughening Due to Crack-Tip Shielding

- The basic idea behind the toughening of all materials is really quite simple
- The idea is to reduce the crack-tip stress by controlling the structure of the underlying material
- Processes that reduce the crack-tip stress are known as crack-tip shielding processes
- The effective stress, K_{eff} intensity factor is now given by

$$K_{eff} = K_{app} - K_s$$

Fracture or stable crack growth occur when K_{eff} reaches critical values

Schematic of Possible Toughening Mechanisms

· Taken from a review article by R.O. Ritchie

MICROCRACK TOUGHENING:

$$\Delta(K) \sim E'f_* \varepsilon_*^n \sqrt{h}$$

TRANSFORMATION TOUGHENING:

$$\Delta(K) \sim E' f_* \, \varepsilon_*^\intercal \, \sqrt{h}$$

 BRITTLE FIBER/WHISKER TOUGHENING: (crack bridging)

$$\Delta(K) \sim \left(2f_* \, E' \, \tau_i \, \ell^2 \, / \alpha \right)^{\frac{N}{2}}$$

DUCTILE PARTICLE TOUGHENING:

Toughening of Dental Ceramics - A Case Study in the Design of Biomaterials

- The design of ceramics for crown applications requires considerations of two major properties
 - aesthetics
 - fracture toughness
- · Major competition between the requirements for these two properties
- · Often the materials that are tough are not aesthetic and vice-versa

Schematic of Crown on Dentin

Schematic of Composite on Dentin

Toughening of Dental Ceramic Composites for Crown Applications

- · Glass matrices are often selected aesthetics (color) controlled by the use of pigments
- · However, glass matrices have limited fracture resistance
- · Hence, extrinsic toughening is used to improve fracture resistance
- · Typical glass ceramic composites include
 - glass matrix + leucite particles
 - glass matrix + alumina (Al₂O₃) particles
 - glass matrix + mica particles
 - glass matrix + partially stabilized zirconia particles

The Fracture Toughness of Dental Ceramic Composites

- The glass matrices (close to soda lime glass) have fracture toughness levels of
 ~ 0.6 MPa√m
- Alumina and mica-reinforced composites have fracture toughness levels of
 ~ 0.7-1.2 MPa√m
- Zirconia-reinforced composites have fracture toughness levels between 2 and $6 \text{ MPa} \sqrt{m}$
- So why don't we use zirconia toughened ceramics as the materials of choice in most crowns
- The reason is poor aesthetics greenish looking teeth is simply not appealing!

Summary and Concluding Remarks

- An introduction to fracture and toughening of materials was presented
- Fracture occurs by the separation of bonds with or without prior plasticity (microscopically brittle or ductile processes are possible)
- Crack nucleation sites often associated with local stress concentrations especially around notches - avoid stress concentrations in design
- The stress intensity factor, K, represents the driving force for crack growth
- Fracture toughness values, K_{Ic}, are material properties that characterize the resistance to crack "initiation" while crack growth resistance is best characterized on resistancecurves
- Improved biomaterials can be designed using crack-tip shielding concepts however, other factors such as aesthetics may be just as important as fracture toughness